Book Review: Non-Riemannian Geometry
نویسندگان
چکیده
منابع مشابه
Probing non-Riemannian spacetime geometry
The equations of motion for matter in non-Riemannian spacetimes are derived via a multipole method. It is found that only test bodies with microstructure couple to the non-Riemannian spacetime geometry. Consequently it is impossible to detect spacetime torsion with the satellite experiment Gravity Probe B, contrary to some recent claims in the literature.
متن کاملNon-Riemannian geometry of vortex acoustics
The concept of acoustic metric introduced previously by Unruh (PRL-1981) is extended to include Cartan torsion by analogy with the scalar wave equation in Riemann-Cartan (RC) spacetime. This equation describes irrotational perturbations in rotational non-relativistic fluids. This physical motivation allows us to show that the acoustic line element can be conformally mapped to the line element o...
متن کاملNon-Riemannian Geometry of Twisted Flux Tubes
New examples of the theory recently proposed by Ricca [PRA(1991)] on the generalization of Da RiosBetchov intrinsic equations on curvature and torsion of classical non-Riemannian vortex higher-dimensional string are given. In particular we consider applications to 3-dimesional fluid dynamics, including the case of a twisted flux tube and the fluid rotation. In this case use is made of Da Rios e...
متن کاملOn non-Riemannian geometry of superfluids
The Gross-Pitaevski (GP) equation describing helium superfluids is extended to non-Riemannian spacetime background where torsion is shown to induce the splitting in the potential energy of the flow. A cylindrically symmetric solution for Minkowski background with constant torsion is obtained which shows that torsion induces a damping on the superfluid flow velocity. The Sagnac phase shift is co...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1929
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1929-04723-2